
GLAST SSC Perl

Coding Standards

and

Style Guide

(taken originally from GLAST MOC standards by Eric Martin &
Marilyn Mix)

TABLE OF CONTENTS

1. Perl Coding Standard... 3
1.1. File Organization ... 3
1.2. Naming Conventions ... 4
1.3. Style Guidelines... 5

1. Perl Coding Standard

1.1. File Organization

Every source file must contain the following items:
1. File name
2. General description of the code contained in the file
3. The name of the initial author and initial creation date
4. Release info
5. Source code
6. Change history

Use this template for new Perl files. This template includes the necessary CVS
keywords and placeholders for the required file prolog elements.

#!/usr/bin/perl
#
File:
#
Description:
#
Author:
Date:
#
#
Functions
... list of functions defined in this file
#
my $release = ' Id $Name$ ';
print $release;

#
... Your code here ...
#

Change History:
Log

The CVS keyword strings are assigned to a variable and print it in order to identify the
version of the software that is being run. This is required to implement software version
auditing as described in the GLAST MOC CM Plan. Printing the release is, of course, not
necessary in a Perl module file (.pm). Non-interactive Perl scripts should output the
release info to a log file.

Each subroutine must be preceded by a prolog that consists of comments describing the
subroutine including at a minimum

• A one line description of the purpose of the subroutine.
• Description of the arguments and any return value.
• Algorithm or implementation approach

The audience of the prolog is both the user that calls the subroutines and the developer
who may need to modify the code.

1.2. Naming Conventions
The following table summarizes the naming conventions:

Identifier Convention

subroutine,
method

meaningful_name

variable $meaningful_name or $_meaningful_name

source file meaningful_name.pl, less than 12 characters if users will be regularly typing it on
a command line

package
file

MeaningfulName.pm

Choose mnemonic identifiers. If you can't remember what mnemonic means, you've got a
problem.

While short identifiers like $gotit are probably ok, use underscores to separate words.
It is generally easier to read $var_names_like_this than
$VarNamesLikeThis, especially for non-native speakers of English. It's also a simple
rule that works consistently with VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally reserves
lowercase module names for "pragma" modules like integer and strict. Other modules
should begin with a capital letter and use mixed case, but probably without underscores
due to limitations in primitive file systems' representations of module names as files that
must fit into a few sparse bytes. Also, mixed uppercase and underscores is unnecessary,
harder to read, and harder to type. Use underscore or uppercase to separate words but not
both.

You may find it helpful to use letter case to indicate the scope or nature of a variable. For
example:

 $ALL_CAPS_HERE constants only (beware clashes with perl vars!)
 $no_caps_here function scope my() or local() variables

$global_var_g Append _g to global variables

Function and method names seem to work best as all lowercase. E.g.,
 $obj->as_string().

You can use a leading underscore to indicate that a variable or function should not be
used outside the package that defined it.

1.3. Style Guidelines

From http://www.perldoc.com/perl5.6/pod/perlstyle.html as of 6 FEB 2004. Since the
internet is empheral, here is an edited copy.

Each programmer will, of course, have his or her own preferences in regards to
formatting, but there are some general guidelines that will make your programs easier to
read, understand, and maintain. [If you are modifying existing code, adapt to the style
used in the original. If it is inconsistent, then use the style described here.]

The most important thing is to run your programs under the -w flag at all times. You may
turn it off explicitly for particular portions of code via the use warnings pragma or the
$^W variable if you must. You should also always run under use strict or know the
reason why not. The use sigtrap and even use diagnostics pragmas may also prove useful.

Regarding aesthetics of code lay out, about the only thing Larry (Wall, Perl inventor)
cares strongly about is that the closing curly bracket of a multi-line BLOCK should line
up with the keyword that started the construct. Beyond that, he has other preferences that
aren't so strong:

• 4-column indent.
• Opening curly on same line as keyword, if possible, otherwise line up. [This is

also good for emacs because when you select the closing curly brace, emacs will
show you the line of the matching open curly brace. This lets you see if the
nesting is correct.]

• Space before the opening curly of a multi-line BLOCK.
• One-line BLOCK may be put on one line, including curlies.
• No space before the semicolon.
• Semicolon omitted in "short" one-line BLOCK.
• Space around most operators.
• Space around a "complex" subscript (inside brackets).
• Blank lines between chunks that do different things.
• No space between function name and its opening parenthesis.
• Space after each comma.
• Long lines broken after an operator (except "and" and "or").
• Space after last parenthesis matching on current line.
• Line up corresponding items vertically.
• Omit redundant punctuation as long as clarity doesn't suffer.

Larry has his reasons for each of these things, but he doesn't claim that everyone else's
mind works the same as his does.

Here are some other more substantive style issues to think about:

1.3.1. Readable

1.3.1.1. Be straight forward

Just because you CAN do something a particular way doesn't mean that you SHOULD do
it that way. Perl is designed to give you several ways to do anything, so consider picking
the most readable one. For instance

 open(FOO,$foo) || die "Can't open $foo: $!";

is better than

 die "Can't open $foo: $!" unless open(FOO,$foo);

because the second way hides the main point of the statement in a modifier. On the other
hand

 print "Starting analysis\n" if $verbose;

is better than

 $verbose && print "Starting analysis\n";

because the main point isn't whether the user typed -v or not.

Similarly, just because an operator lets you assume default arguments doesn't mean that
you have to make use of the defaults. The defaults are there for lazy systems
programmers writing one-shot programs. If you want your program to be readable,
consider supplying the argument.

1.3.1.2. Use Parentheses

Along the same lines, just because you CAN omit parentheses in many places doesn't
mean that you ought to:

 return print reverse sort num values %array;
 return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least it will let some poor schmuck bounce on
the % key in vi.

Even if you aren't in doubt, consider the mental welfare of the person who has to
maintain the code after you, and who will probably put parentheses in the wrong place.

1.3.1.3. Loops

Don't go through silly contortions to exit a loop at the top or the bottom, when Perl
provides the last operator so you can exit in the middle. Just "outdent" it a little to
make it more visible:

 LINE:
for (;;) {
 statements;
 last LINE if $foo;
 next LINE if /^#/;
 statements;
}

Don't be afraid to use loop labels--they're there to enhance readability as well as to allow
multilevel loop breaks. See the previous example.

1.3.1.4. Use Return Values
Avoid using grep() (or map()) or `backticks` in a void context, that is, when you just
throw away their return values. Those functions all have return values, so use them.
Otherwise use a foreach() loop or the system() function instead.

1.3.1.5. Portability

For portability, when using features that may not be implemented on every machine, test
the construct in an eval to see if it fails. If you know what version or patchlevel a
particular feature was implemented, you can test $] ($PERL_VERSION in English) to
see if it will be there. The Config module will also let you interrogate values determined
by the Configure program when Perl was installed.

1.3.2. Line Formatting
If you have a really hairy regular expression, use the /x modifier and put in some
whitespace to make it look a little less like line noise. Don't use slash as a delimiter when
your regexp has slashes or backslashes.

Use the new "and" and "or" operators to avoid having to parenthesize list operators so
much, and to reduce the incidence of punctuation operators like && and ||. Call your
subroutines as if they were functions or list operators to avoid excessive ampersands and
parentheses.

Use here documents instead of repeated print() statements.

Line up corresponding things vertically, especially if it'd be too long to fit on one line
anyway.

 $IDX = $ST_MTIME;
 $IDX = $ST_ATIME if $opt_u;
 $IDX = $ST_CTIME if $opt_c;
 $IDX = $ST_SIZE if $opt_s;

 mkdir $tmpdir, 0700 or die "can't mkdir $tmpdir: $!";
 chdir($tmpdir) or die "can't chdir $tmpdir: $!";
 mkdir 'tmp', 0777 or die "can't mkdir $tmpdir/tmp: $!";

Always check the return codes of system calls. Good error messages should go to
STDERR, include which program caused the problem, what the failed system call and
arguments were, and (VERY IMPORTANT) should contain the standard system error
message for what went wrong. Here's a simple but sufficient example:

 opendir(D, $dir) or die "can't opendir $dir: $!";

Line up your transliterations when it makes sense:

 tr [abc]
 [xyz];

1.3.3. General

Think about reusability. Why waste brainpower on a one-shot when you might want to do
something like it again?

Consider generalizing your code. Consider writing a module or object class. Consider
making your code run cleanly with use strict and use warnings (or -w) in effect. Consider
giving away your code. Consider changing your whole world view. Consider... oh, never
mind.

Be consistent.

Be nice.

